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The shape of a long bending elastically deformed bar of arbitrary cross section and the line of motion of the
moving end have been found by solution of the variational problem with one moving boundary with the use
of the transversality condition. The results obtained allow alternative recommendations for experimental meas-
urement of the Young modulus of many elastic materials.

Problems on investigation of elastic deformations of bars have been discussed in numerous publications partially
reflected in the form of a number of problems in [1]. However, it should be noted that none of the works we know
(we do not give a list of publications — there are a large number of them) has raised the question of determining
the shape of the line of the moving end for a comparatively thin beam fixed on one side (at point A) which is bending
under the action of a certain force applied to the moving end (see Fig. 1). It is the specific shape of the line of dis-
placement of point B that makes it possible to determine the work of the applied force F by giving a unique opportunity
to calculate the energy of deformation in any (not necessarily small!) displacement, and to find the relationship between
the elastic constants (in particular, the Young modulus) and the known geometric and mechanical parameters.

Below we will give the solution of this problem formulated purely mathematically as one problem of the sec-
tion of variational calculus with a moving boundary.

Let us assume a long bar (see Fig. 1) of length l fixed on one side with the force F acting on its one end
and causing it to bend. Point B is thus moving and the aim is to determine the extremal y(x) characterizing the shape
of the bar, and the trajectory of motion of point B, i.e., the function ϕ(x).

From the function ϕ(x) found we compute the work done by the force F as the integral A = ∫ [1 + ϕ′2(x)]1 ⁄ 2dx

for the set x 2 [l, x1] and set it equal to the energy of elastic deformation Umin


 y



 .

As far as the functional U

 y



  itself that describes the potential energy of deformation is concerned, its depend-

ence (according to the general principle of composing an expression for energy invariant relative to the operation of
inversion of coordinates) must involve the square of the curvature K.

If the proportionality factor is denoted by α, in accordance with what has been said above we can write the
expression

U 

 y



  = 

α
2

 ∫ 
0

x1

K
2
 dx , (1)

where x1 is the moving point that is the projection of point B onto the x axis which moves along a certain line
ϕ(x1). The factor 1/2 has been introduced for reasons of convenience.

In the case of a plane curve the curvature is found from the simple expression K = y′′  ⁄ (1 + y′2)3 ⁄ 2 = 1/R,
where R(x) is the radius of curvature at a certain point with a coordinate (x, y), and the primes on y denote deriva-
tives. From relation (1) it then follows that

U 

 y



  = 

α
2

 ∫ 
0

x1
y′′

2

(1 + y′
2

) 3
 dx . (2)
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The given functional enables us to automatically write the Euler–Poisson equation [2] having the form Gy − 
dGy′

dx
 +

d2Gy′′

dx2
 = 0, where the function G is equal to y′′ 2

/(1 + y′2)3. It is obvious that the first integral of the equation is

Gy′ − 
dGy′′

dx
 = const. In expanded form, we have

3y′y′′

(1 + y′
2

) 4
 − 

y′′′

(1 + y′
2

) 3
 = const . (3)

Let us select the integration constant equal to zero. This results in the equation (3y′y′′  − y′′′ )(1 + y′2) = 0. It is
easily solved by the substitution of y′ = z(y), and for the new function z(y) we have

z′ = C1 
(1 + z

2)3 ⁄ 2

z
 ,

where the prime denotes differentiation with respect to y. It follows that 1 + z2 = (C1y + C2)−2. Since z = y′, by finding
the remaining elementary integral we obtain the sought family of extremal equations

(C1x + C3)2
 + (C1y + C2)2

 = 1 . (4)

Equation (4), as is obvious, describes the family of circles. In our specific case, if we assume that y = 0 for
x = 0, we easily find the particular solution x2 + y2 − 2R0y = 0. In explicit form, we have

y = R0 + (R0
2
 − x

2)1 ⁄ 2 , (5)

where the new constant R0 = −(C2
 ⁄ C1) > 0 represents the radius of this circle.

Thus, all is clear with the extremal of functional (2); we only note that, according to the sufficient extremum
conditions (see [2]), one can state from an analysis of the Weierstrass function: at least a weak minimum of the func-
tion U


 y



  (which will be denoted as Umin) is attained on the extremals found.
We now find the equation of motion of point B. Since it moves along a certain prescribed line ϕ(x), to de-

termine it we should solve the variational problem with a moving boundary for the functional of the general form

V 

 y



  = ∫ 

x0

x1

 G (x, y, y′, y′′ ) dx .

A simple analysis [2] leads to the following transversality condition:

Fig. 1. Diagrammatic representation of the deformation of an elastic bar of pre-
scribed length l in loading by the force F.
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G + 



Gy′ − 

dGy′′
dx




 (ϕ′ − y′) + Gy′′  (ϕ′′  − y′′ )



 x1

 = 0 , (6)

where the notation Gy′ = ∂G ⁄ ∂y′ and Gy′′  = ∂G ⁄ ∂yy′′  has been introduced for the sake of brevity.
Since we are interested in the equation for the function ϕ(x), by solving (6) for this function we obtain

ϕ′′  − y′′  + 











Gy′ − 
dGy′′

dx
Gy′′









  (ϕ
′ − y′) + 

G
Gy′′

 = 0 (7)

(we have dropped x1 here and we consider x to be running).
According to the Euler–Poisson equation, in our case the first integral has been written in the form

Gy′ − 
dGy′′

dx
 = C∗ , where the integration constant C∗  has been selected (see above) equal to zero. This means that the

middle term in (7) disappears. Next, since in the case in question the integrand is G = y′′ /(1 + y′2)3 ⁄ 2 (here the constant

factor α ⁄ 2 is set equal to unity) and the extremal equation is known and prescribed by expression (5), the derivatives
are easily found and we obtain

Gy′ = − 
6y′y′′

2

(1 + y′
2

)4
 ,   Gy′′  = 

2y′′

(1 + y′
2

)3
 ,   y′ = − 

x

(R0
2
 − x

2)1 ⁄ 2
 ,   y′′  = − 

R0
2

(R0
2
 − x

2)3 ⁄ 2
 .

Simple computations with the use of Eq. (7) simplified by the absence of the middle term lead us to a simple
differential equation of second order for determination of the line of motion of the bar’s end: ϕ′′  − (y′′  ⁄ 2) = 0. Its so-
lution will have the form

ϕ (x) = 
y (x)

2
 + C1x + C2 . (8)

The integration constants are found from the conditions ϕ(l) = −0 and ϕ(x1) = y(x1). As a result we obtain

C1 = 
2R0 + (R0

2
 − x1

2)1 ⁄ 2 + (R0
2
 − l

2)1 ⁄ 2

2 (x1 − l)
 ,   C2 = − 

l R0 + (R0
2
 − x1

2)1 ⁄ 2
  + x1 R0 (R0

2
 − l

2)1 ⁄ 2


2 (x1 − l)
 . (9)

If the radius is large (small bending), namely, R0 >> x1 and l, it approximately follows from (9) that C1 C 2R0/(x1 − l)

and C2 C −R0 (x1 + l)/(x1 − l). Furthermore, when x 2 [x1, l], we also have the right to expand the expression for y(x).

The latter yields y(x) C 2R0 − 
x2

2R0
; therefore, confining ourselves just to the term linear in x in the solution (8), we can

write that

ϕ (x) C 
2R0 (l − x)

(l − x1)
 . (10)

To evaluate now the elastic energy stored by the bar and equal (as has been said above) to the work A which
is expended by the force F on moving point B from the value x = l to x = x1 we should evaluate the simple integral

A = ∫ Fds, where the arc element is dS = (1 + ϕ′2)1 ⁄ 2dx. Using (10), we easily obtain A = F ∫ 



1 + 

4R0
2

(1 − x1)2





1 ⁄ 2

dx for

x 2 [x1, l]. With allowance for what has been said above we have A C 2R0
2F/(l − x1).
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On the other hand, the minimum energy stored by the bar as a result of deformation will be equal, according
to the determination (2) and the solution (5), to

Umin = 
α

2
  ∫ 

0

x1

 
y′′

2

(1 + y′
2

)3
 dx = 

αx1

2R0
2 . (11)

From the equation A = Umin we find the coefficient α related to the elastic properties of the bar. One usually

assumes that α = EJ, where J = ∫ ξ2dσ (dσ is the element of the cross-sectional area). It then follows from what has

been said above that the Young modulus is determined as

E = 
4FR0

4

Jx1 (l − x1)
 . (12)

We evaluate the expression obtained. We assume that the bar length is l = 100 cm, the moment of inertia of
the cross section is J = 50 cm4, the displacement is x1 = 10 cm, and the applied force is F = 107 dyn; let the bending
radius be R0 = 200 cm. Finally, we obtain E = 1.5⋅1012 erg/cm3. Such a rough value is very close to the Young
modulus for steel.

Finally, we note that if consideration is given to the case where the bending radius R0 is comparable to the

bar length, the consideration presented above needs correction and the work of the force F must be written in the form

of an integral with allowance for the exact expression for ϕ′, namely, ϕ′ = C1 − 
x

2 (R0
2 − x2)1 ⁄ 2

. As a result we have

A = 
F
2

  ∫ 

x1

l

 




1 − 4C1 

x

R0

 



1 − 

x
2

R0
2





1 ⁄ 2
 + 4C1

2
 



1 − 

x
2

R0
2









1 ⁄ 2

1 − 
x

2

R0
2

 dx .

Using the substitution x = R0 sin t, we arrive at the expression

A = 
FR0

2
  ∫ 
tlow

tup

 dt 1 − 2C1 sin 2t + 4C1
2
 cos

2
 t

1 ⁄ 2
 , (13)

where tlow = arcsin 
x1

R0
, tup = arcsin 

l
R0

, and the constant C1 has been determined in (9).

We emphasize that formula (13) "works" for any deformations, including very considerable ones, but to deter-
mine the Young modulus we should integrate numerically expression (13) in these cases and only after that should we
find E from the equality A = EJx1/(2R0

2).
We also note that a number of some extremum problems have been described in [3].
We did not introduce a correction for the natural deflection of the bar under gravity for the simple reason that

the bar can always be put on a smooth surface and it could be bent in the plane of this surface when gravity is of
no importance. The friction force can easily be allowed for using a correction for the force F, namely, F can be re-
placed by the difference F − Ffr, where Ffr is the friction force equal to the product of k by N.

In closing, we can note the following:
(1) using variational principles, we have computed the "trajectory" of the moving point B to which a certain

force F (causing the bar to bend by a prescribed value x1 along the x axis) is applied;
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(2) we have proposed an alternative method of evaluation of the Young modulus on the basis of formula (12)
in which F, R0, x1, l, and J are known.

NOTATION

A, work done on the elastically deformed bar, J; C1,2,3, integration constants; E, Young modulus, N/m2; F,
force applied to the bar, N; Ffr, friction force, N; G, integrand in the functional; J, moment of inertia of the bar cross
section, m4; K, curvature of the deformed bar, m−1; k, coefficient of friction of the bar against the surface; l, bar
length, m; N, reaction of the surface, N; R, radius of curvature of the bar, m; R0, radius of the circle along which the
bar is bent, m; S, arc length, m; dS, element of the arc, m; U, energy of the elastically deformed bar, J; Umin, mini-
mum energy of deformation, computed for the dependence y(x), J; x, running abscissa of point B, m; x1, finite abscissa
of movement of point B, m; y(x), extremal of the functional, m; α, proportionality factor, J⋅m; ϕ(x), line of displace-
ment of the bar end, m; ξ, running coordinate of the bar cross section, m; σ, cross-sectional area of the bar, m2; t,
argument of integration; tlow, lower limit of integration; tup, upper limit of integration; y′ = dy/dx, y′′  = d2y ⁄ dx2, and
y′′′  = d3y ⁄ dx3, contracted notation of the first, second, and third derivatives; ∂ ⁄ ∂y and ∂ ⁄ ∂y′, partial derivatives with
respect to y and y′; Gu = ∂G ⁄ ∂u, contracted notation of the partial derivative with respect to the argument u; V


 y



 ,

functional of y (dimensionless). Subscripts: min, minimum; low, lower; up, upper; fr, friction.
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